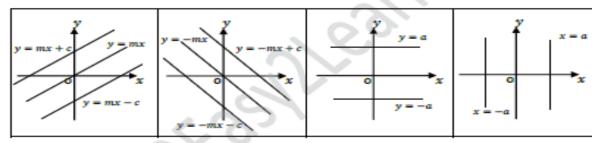
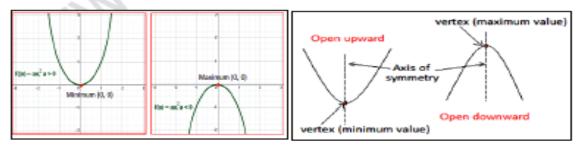
	<u>Graphs of functions and Travel graphs</u> Compiled by : Mustafa Asif
24. Graphs in practical situations	 interpret and use graphs in practical situations including travel graphs and conversion graphs draw graphs from given data apply the idea of rate of change to easy kinematics involving distance-time and speed-time graphs, acceleration and deceleration calculate distance travelled as area under a linear speed-time graph
25. Graphs of functions	 construct tables of values and draw graphs for functions of the form <i>axⁿ</i> where <i>a</i> is a rational constant, and <i>n</i> = -2, -1, 0, 1, 2, 3, and simple sums of not more than three of these and for functions of the form <i>ka^x</i> where <i>a</i> is a positive integer interpret graphs of linear, quadratic, cubic, reciprocal and exponential functions solve associated equations approximately by graphical methods estimate gradients of curves by drawing tangents

Videos for understanding

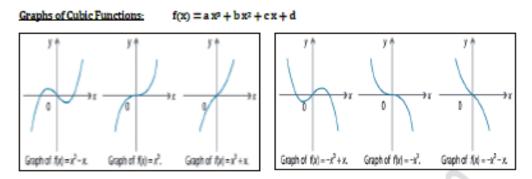

https://www.youtube.com/watch?v=eCEXUwmtdE&list=PLjK050gbQMRKZSq_HtXJBXqKQVaV4rzb3&index=2

https://www.youtube.com/watch?v=LJctqrA9jhU

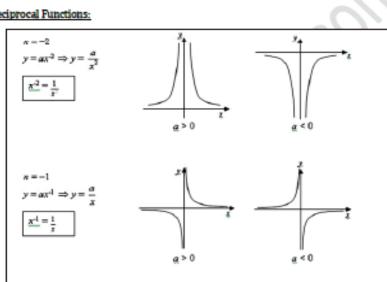
https://www.youtube.com/watch?v=7C3f-sYMNCU


Graphs of Functions and Graphical Solutions

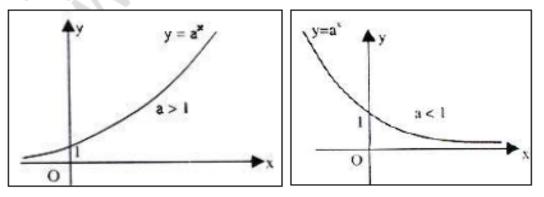
Graphs of Quadratic Function : $f(x) = ax^2 + bx + c$


Graphing Quadratic Functions in Vertex Form : A quadratic function $f(x) = ax^2 + bx + c$ can be expressed in vertex form as $y = a(x - h)^2 + k$, where the vertex of the graph is (h, k) and the axis of symmetry is x = h.

Graphs of functions and Travel graphs


Compiled by : Mustafa Asif

www.2Easy2Learn.Com



1

Graphs of Reciprocal Functions:

Graphs of Exponential Functions

Graphs in Practical Situation and Travel Graphs

Key Points

Speed: Speed can be defined as the distance covered by a moving object in unit time taken. SI unit of speed is m/s or ms-1. Speed is a scalar quantity.

Uniform Speed: An object is said to be moving with uniform speed if it covers equal distances in equal intervals of time.

Variable Speed: An object is said to be moving with variable speed or non-uniform speed if it covers equal distances in unequal intervals of time or vice-versa.

Instantaneous Speed: The speed that the body possesses at a particular instant of time, is called instantaneous speed.

Average Speed: When we travel in a vehicle the speed of the vehicle changes from time to time depending upon the conditions existing on the road. In such a situation, the speed is calculated by taking the ratio of the total distance traveled by the vehicle to the total time taken for the journey. This is called the average speed

> Average Speed = Total Distance Traveled Total Time Taken

Acceleration: Acceleration is defined as the rate of change of velocity of a moving body with time. This change could be a change in the speed of the object or its direction of motion or both. Let an object moving with an initial velocity 'u' attain a final velocity 'v' in time 't', then acceleration 'a' produced in the object is

Acceleration = Rate of change of velocity with time

$$Acceleration = \frac{Change in velocity}{Time} \qquad a = \frac{v - u}{t}$$

The SI unit of velocity is m/s and time is s

 \therefore SI unit of acceleration is $\frac{m}{s} = \frac{m}{s^2}$ Acceleration is a vector quantity.

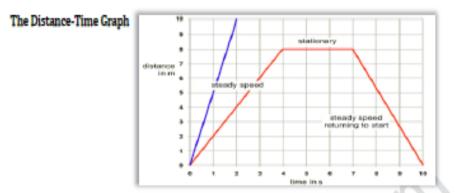
Positive Acceleration : If the velocity of an object increases then the object

is said to be moving with positive acceleration.

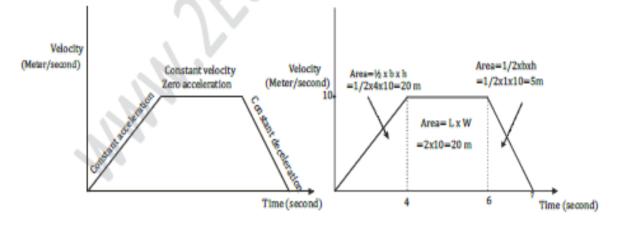
Example: A ball rolling down on an inclined plane.

Negative Acceleration : If the velocity of an object decreases then the object is

said to be moving with negative acceleration. Negative acceleration is also known as


retardation or deceleration.

Examples: A ball moving up an inclined plane or a ball thrown vertically upwards is moving with a negative acceleration as the velocity decreases with time.


Zero Acceleration: If the change in velocity is zero, i.e., either the object is at rest or moving with uniform velocity, then the object is said to have zero acceleration.

- Vertical coordinate shows distance.
- Horizontal coordinates shows time.
- Slope (gradient) shows speed.
- Straight line segments indicate constant speed.
- Graph getting steeper indicates getting faster, graph getting shallower indicates slowing down
- Level parts (horizontal line) indicate stopping

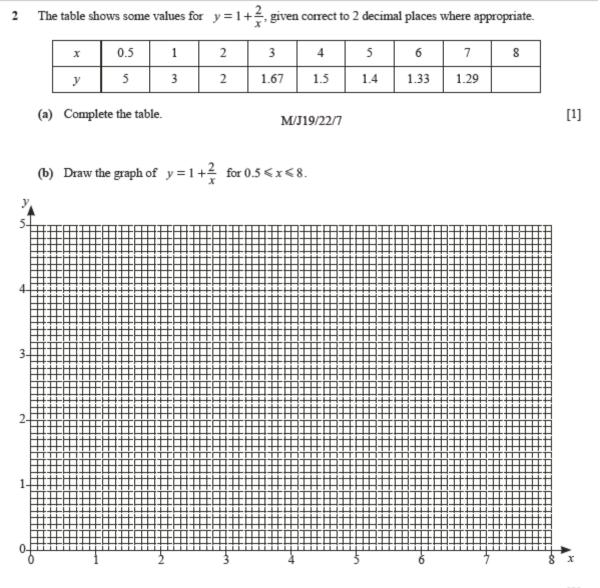
Speed-time graphs

- Vertical coordinate shows Speed.
- Slope (gradient) shows constant acceleration.
- Horizontal line segments indicate constant speed (acceleration is zero).
- Area under the curve shows distance.
- Moving away from the horizontal axis indicates getting faster, moving towards the horizontal axis indicates getting slower.



- Graph above the horizontal axis indicates moving forward, graph below the horizontal axis indicates moving backward.
- Points on the horizontal axis indicate stopping.

A car starts a journey from rest.

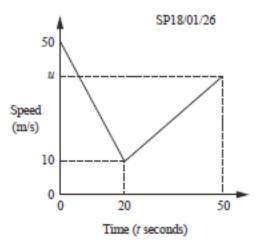

It moves with constant acceleration for 20 seconds until it reaches a speed of 15 m/s. It then moves at a constant speed of 15 m/s for 40 seconds. M/J19/12/9

(a) On the grid, draw the speed-time graph for the car's journey.

(b) Calculate the acceleration of the car in the first 20 seconds of the journey.

.....m/s² [1]

[2]


(c) The line L crosses the graph of y = 1 + ²/_x at x = 2 and x = 5.
Find the equation of L.

(d) A line with gradient $-\frac{1}{3}$ crosses the graph of $y = 1 + \frac{2}{x}$ when x = 1 and when x = k.

By drawing a suitable line on your grid, find k.

......[3]

3 The diagram is the speed-time graph of part of a train's journey.

The train slows down uniformly from a speed of 50 m/s to a speed of 10 m/s in a time of 20 seconds.

During the next 30 seconds, it accelerates uniformly to a speed of um/s.

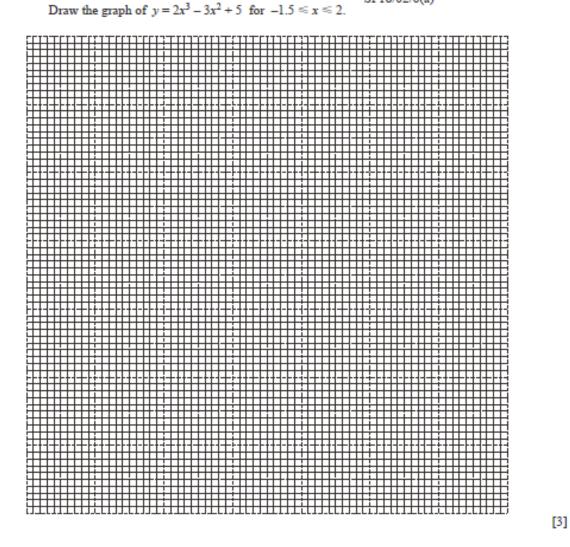
(a) Calculate the deceleration from t = 0 to t = 20.

Answer m/s² [1]

(b) Calculate the speed of the train when t = 15.

(c) Calculate the distance travelled by the train from t = 0 to t = 20.

(d) The size of the acceleration is half the size of the deceleration. Find the value of u.

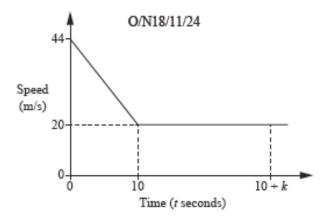

4 (a) The table shows some values of x and the corresponding values of y for y = 2x³ - 3x² + 5.

x	-1.5	-l	-0.5	0	0.5	1	1.5	2
У		0	4	5	4.5	4	5	9

(i) Complete the table.

(ii) Using a scale of 4 cm to represent 1 unit, draw a horizontal x-axis for -1.5 ≤ x ≤ 2. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for -10 ≤ y ≤ 10.

SP18/02/6(a)



(iii) Use your graph to estimate the gradient of the curve when x = 1.5.

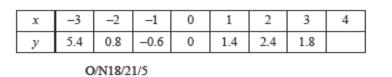
(iv) By drawing a suitable line on your graph, find the solution of the equation $2x^3 - 3x^2 + 4 = 0$.

[1]

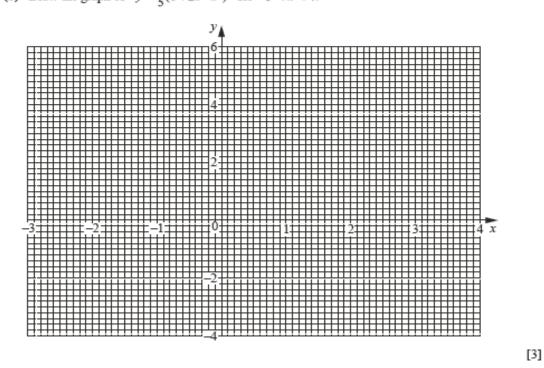
5 The diagram is the speed-time graph of part of a train's journey.

The train slows down uniformly from a speed of 44 m/s to a speed of 20 m/s in a time of 10 seconds. It then continues at a constant speed of 20 m/s.

(a) Find the deceleration when t = 5.


Answer m/s² [1]

(b) Find the speed when t = 5.


(c) The distance travelled from t = 0 to t = 10 is equal to the distance travelled from t = 10 to t = 10 + k.

Find k.

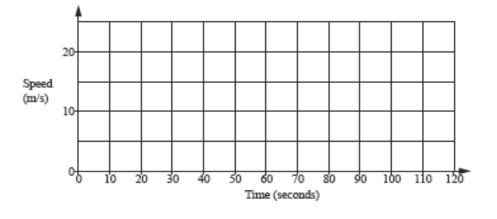
 $y = \frac{x}{5}(6 + 2x - x^2)$. (a) Complete the table for 6

(b) Draw the graph of $y = \frac{x}{5}(6+2x-x^2)$ for $-3 \le x \le 4$.

(c) By drawing a tangent, estimate the gradient of $y = \frac{x}{5}(6 + 2x - x^2)$ at (-2, 0.8).

[1]

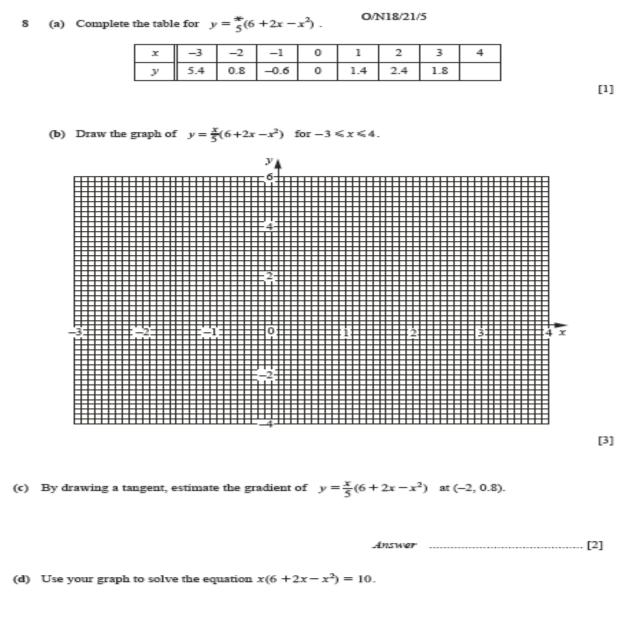
(d) Use your graph to solve the equation x(6+2x-x²) = 10.

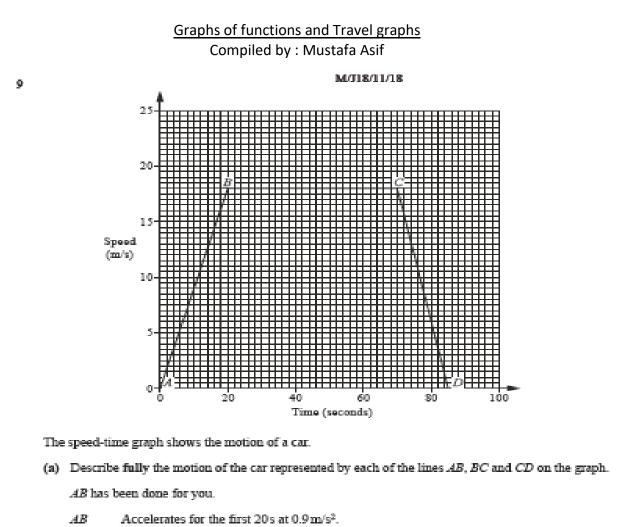

7 A train travels between two stations, starting and finishing at rest.

For this journey it

accelerates uniformly, from rest, for the first 30 seconds until it reaches a speed of 20 m/s

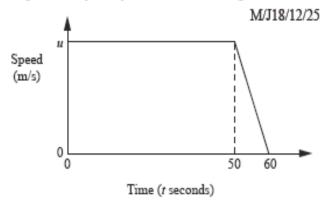
O/N18/12/24


- travels at a constant speed of 20 m/s for the next 60 seconds
- slows down uniformly for the last 20 seconds until it stops.
- (a) On the grid, draw the speed-time graph for this journey.



(b) Calculate the distance between the stations.

Answer m [2]


[2]

(b)	Find the total distance travelled by the car during this motion.	
	CD	[3]
	BC	•••••

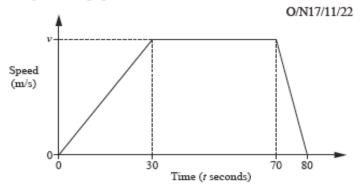
10 The diagram is the speed-time graph for 60 seconds of a train's journey. At the beginning of this part of the journey the train is travelling at u m/s.


Giving each answer in its simplest form, find expressions in terms of u, for

(a) the deceleration for the last 10 seconds,

Answerm/s² [1]

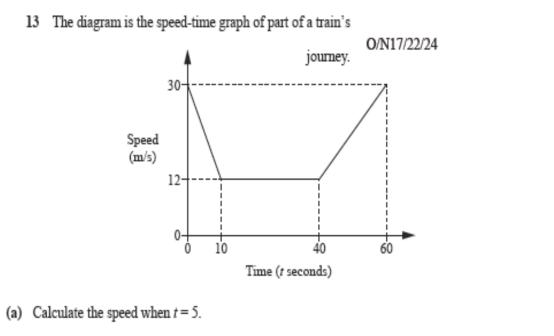
(b) the speed when t = 55,


(c) the distance travelled during these 60 seconds.

(ii) The x-coordinates of the points of intersection of this line and the curve are the solutions of the equation $2x^2 + Ax + B = 0$.

Find the value of A and the value of B.

12 The diagram is the speed-time graph of a train which travels between two stations.



(a) Find an expression, in terms of v, for the retardation of the train.

Answerm/s² [1]

(b) The distance between the two stations is 1.2 km.

Find v.

(b) Calculate the acceleration.

Answerm/s² [1]

(c) Calculate the distance travelled from t = 40 to t = 60.

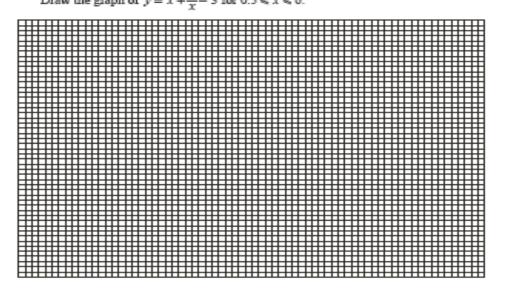
14 (a) (i) The points (4, -3) and (0, 5) lie on the line L.
 Find the equation of line L.
 O/N17/21/7

(ii) The line M is parallel to line L and passes through the point (-2, 3). Find the equation of line M.

(b) The table below shows some values of x and the corresponding values of y for y = x + ³/_x - 3.

х	0.5	1	1.5	2	3	4	5	6
У	3.5	1	0.5	0.5	1	1.75	2.6	

(i) Complete the table.


[1]

Graphs of functions and Travel graphs

Compiled by : Mustafa Asif

(ii) Using a scale of 2 cm to 1 unit on both axes, draw a horizontal x-axis for 0 ≤ x ≤ 7 and a vertical y-axis for 0 ≤ y ≤ 4.

Draw the graph of $y = x + \frac{3}{x} - 3$ for $0.5 \le x \le 6$.

(iii) By drawing a tangent, estimate the gradient of the curve at (1, 1).

[3]

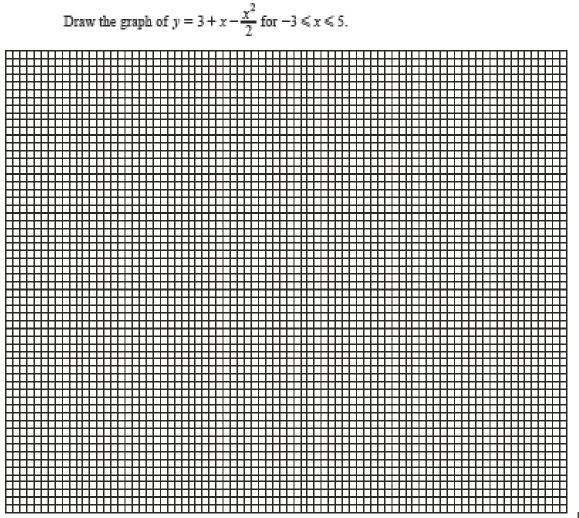
(iv) Use your graph to solve the equation x + 3/x = 5.

Answar x = or [2]

Graphs of functions and Travel graphs

Compiled by : Mustafa Asif

15(a) The variables x and y are connected by the equation $y = 3 + x - \frac{x^2}{2}$.


Some corresponding values of x and y are given in the table below.

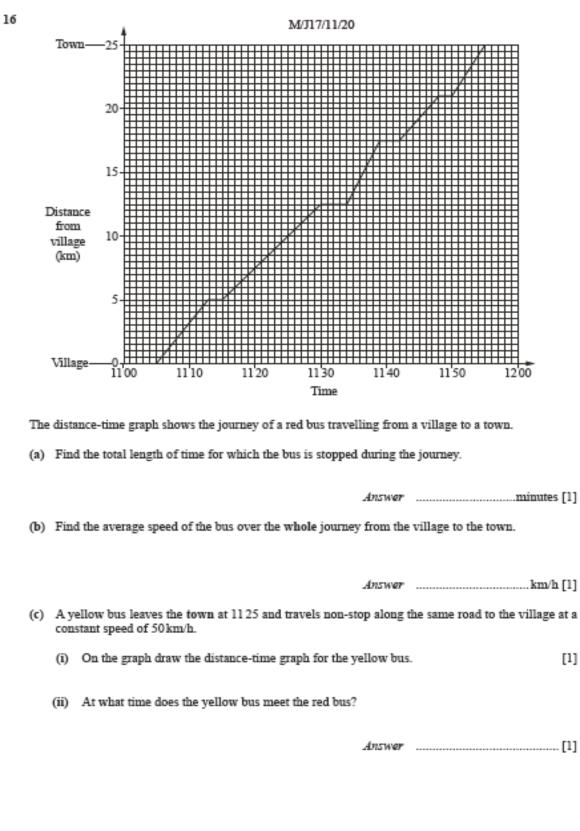
x	-3	-2	-1	0	1	2	3	4	5
у		-1	1.5	3	3.5	3	1.5	-1	

(i) Complete the table.

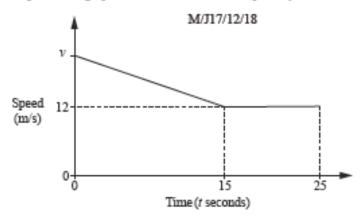
O/N17/22/7

(ii) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for −3 ≤ x ≤ 5. Using a scale of 1 cm to 1 unit, draw a vertical y-axis for −5 ≤ y ≤ 5.

[3]


[1]

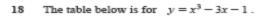
(iii) By drawing a tangent, estimate the gradient of the curve at (3, 1.5).


(iv) The points of intersection of the graph of $y = 3 + x - \frac{x^*}{2}$ and the line y = k are the solutions of the equation $10 + 2x - x^2 = 0$. (a) Find the value of k. (b) By drawing the line y = k on your graph, find the solutions of the equation $10 + 2x - x^2 = 0$. (b) This is a sketch of the graph of y = pa^x, where a > 0. The graph passes through the points (0, 4) and (2, 36). (2,36) (0, 4)-X 0 Write down the value of p. (ii) Find the value of a. Answer[1] (iii) The graph passes through the point (4, q). Find the value of q.

Graphs of functions and Travel graphs

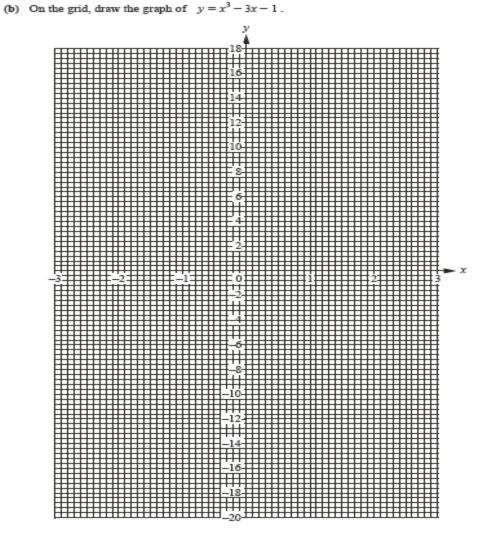
Compiled by : Mustafa Asif

17 The diagram is the speed-time graph for 25 seconds of a car's journey.



The car slows down uniformly from a speed of ν m/s to a speed of 12 m/s in 15 seconds. It then travels at constant speed for a further 10 seconds.

(a) The retardation of the car is 0.4m/s².


Calculate the value of v.

(b) Calculate the distance travelled by the car from t = 0 to t = 25.

	x	-3	-2	-1	0	1	2	3
	У	-19	-3	1	-1	-3	1	
,	Complete	the table.			М/J17/21	/5		

(a) Complete the table.

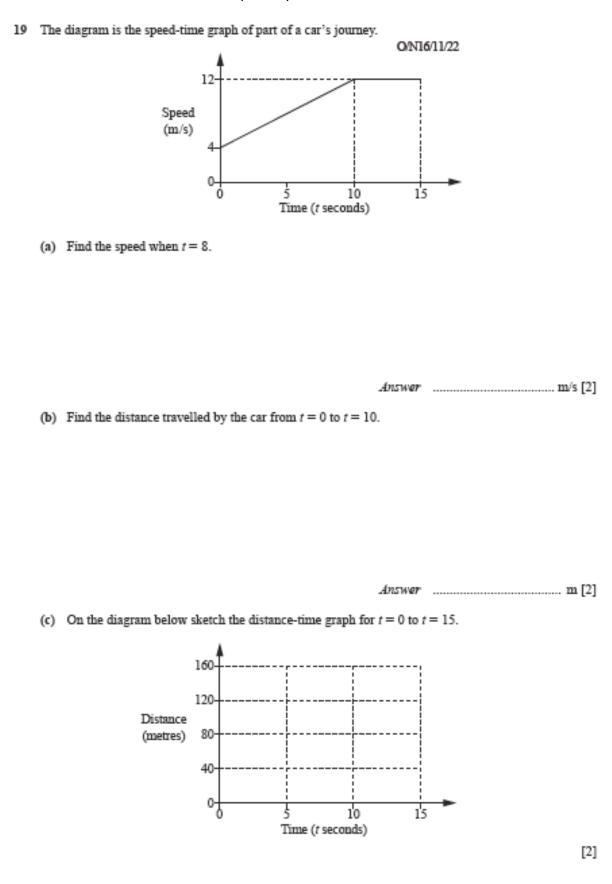
[3]

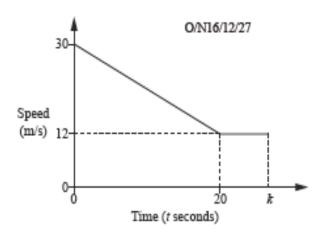
[1]

(c) Use your graph to solve x³ - 3x - 1 = 0.

(d) Use your graph to estimate the gradient of the curve when x = -1.5.

[1]


(e) (i) On the grid draw the graph of y = 4x + 3.


(ii) The line y = 4x + 3 and the curve $y = x^3 - 3x - 1$ can be used to solve the equation $x^3 = ax + b$.

Find the values of a and b.

Answer a = b = [2]

(iii) Use your graph to find one of the negative solutions of $x^3 = ax + b$.

The diagram shows the speed-time graph of a car which slows down from 30 m/s to 12 m/s in 20 seconds, and then continues at a speed of 12 m/s.

(a) Find the retardation when t = 10.

(b) Find the distance travelled by the car between t = 0 and t = 20.

Answer m [2]

(c) The distance travelled by the car between t = 20 and t = k is 60 m.

Find the value of k.

Answer k = [2]

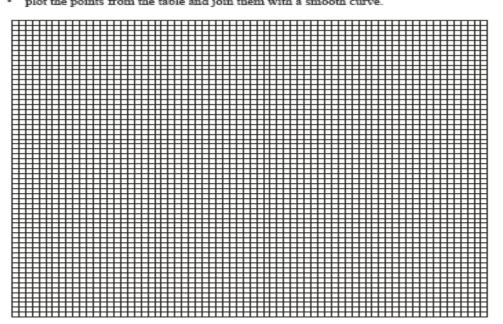
21

 $y = \frac{3}{5} \times 2^x$ O/N16/21/8

The table shows some values of x and the corresponding values of y, correct to one decimal place where necessary.

x	-1.5	-1	0	1	2	2.5	3	3.5	4
У	р	0.3	0.6	1.2	2.4	3.4	4.8	6.8	9.6

(a) Calculate p.

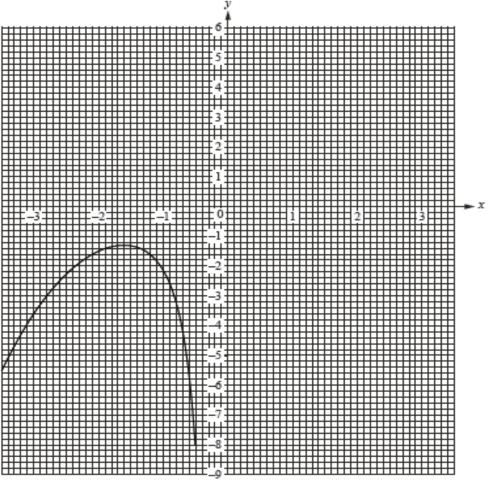

[3]

(b) On the grid,

using a scale of 2 cm to 1 unit, draw a horizontal x-axis for −2 ≤ x ≤ 4,

using a scale of 1 cm to 1 unit, draw a vertical y-axis for 0 ≤ y ≤ 10,

plot the points from the table and join them with a smooth curve.


Answer A = B = [2]

22
$$y = \frac{x^3}{8} - \frac{2}{x^2}, x \neq 0$$

(a) Complete the table of values.

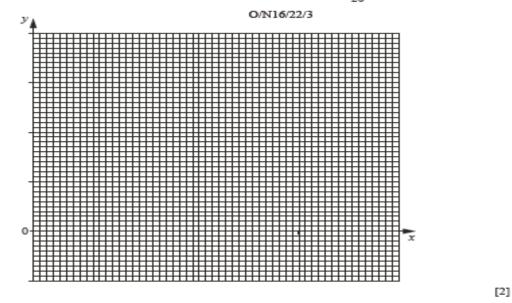
x	0.5	1	1.5	2	2.5	3	3.5
у	-8.0	-1.9	-0.5	0.5	1.6		

(b)

The graph of $y = \frac{x^3}{8} - \frac{2}{x^2}$ for $-3.5 \le x \le -0.5$ has already been drawn. On the grid, draw the graph of $y = \frac{x^3}{8} - \frac{2}{x^2}$ for $0.5 \le x \le 3.5$.

[4]

[2]


(c)	Use	your graph to solve the equation $\frac{x^3}{8} - \frac{2}{x^2} = 0$.	
			x =[1]
(d)	$\frac{x^3}{8}$	$-\frac{2}{x^2} = k$ and k is an integer.	
	Wri	te down a value of k when the equation $\frac{x^3}{8} - \frac{2}{x^2} = k$ has	
	(i)	one answer,	<i>k</i> =[1]
	(ii)	three answers.	<i>k</i> =[1]
(e)	By	drawing a suitable tangent, estimate the gradient of the curv	where $x = -3$.
			[7]
(f)	(i)	By drawing a suitable line on the grid, find x when $\frac{x^3}{8} - \frac{x^3}{x}$	$\frac{2}{2} = 6 - x.$ [3]
			•
			x =[3]
			x =[2]
	(ii)	The equation $\frac{x^3}{8} - \frac{2}{x^2} = 6 - x$ can be written as $x^5 + ax^3 + a$	$-bx^2 + c = 0.$
		Find the values of a, b and c .	
			<i>a</i> =
			<i>b</i> =

c =[4]

23 (a) Complete the table of values for $y = \frac{x}{20}(x^2 - 10)$.

-			20 *	,		
x	0	1	2	3	4	5
У	0	-0.45	-0.6	-0.15	1.2	

(b) Using a scale of 2 cm to 1 unit on both axes, draw the graph of $y = \frac{x}{20}(x^2 - 10)$ for $0 \le x \le 5$.

(c) By drawing a tangent, estimate the gradient of the curve at the point where x = 2.5.

[1]

(d) Use your graph to solve the equation $\frac{x}{20}(x^2 - 10) = 0$ for $0 \le x \le 5$.

- (e) The graph of $y = \frac{x}{20}(x^2 10)$, together with the graph of a straight line *L*, can be used to solve the equation $x^3 + 10x 80 = 0$ for $0 \le x \le 5$.
 - (i) Find the equation of line L.

(ii) Draw the graph of line L on the grid. [1]

(iii) Hence solve the equation $x^3 + 10x - 80 = 0$ for $0 \le x \le 5$.

Marking Scheme

1(a)	Correct graph	2	 B1 for ruled line from (0, 0) to (20, 15) B1 for ruled line from (<i>their</i> 20, 15) to (<i>their</i> 20+ 40, 15)
1(b)	0.75 oe	1	

2(a)	1.25 oe	1		
2(b)	Correct smooth curve	2	F	B1FT for at least 6 points correctly plotted
2(c)	$y = -\frac{1}{5}x + 2.4$ oe final answer	3	N	M1 for $\frac{d-b}{c-a}$ from correct (a, b) and (c, d)
				M1 for correct method to find
2(d)	line drawn through (1, 3) with negative gradient, crossing the curve twice	B 1		
Kucsuon	5.8 to 6.2	B1		
3(a)	(-)2		1	
3(b)	20		1	
3(c)	600		1	
3(d)	40 or $10 + 30 \times \frac{their(a)}{2} $ ft		1	
4(a)(i)	-8.5		1	
4(a)(ii)	8 points correctly plotted and joined with a smooth curve on correct axes		3	 B1 for correct scale B1 for 6 or 7 given table points correctly plotted on <i>their</i> axes B1 for smooth curve through all 8 points on <i>their</i> consistent axes
4(a)(iii)	2.5 – 6.5 (dep on tangent soi)		2	M1 for tangent at $x = 1.5$ soi
4(a)(iv)	-0.85 to -0.95		2	M1 for $y = 1$ soi
5(a)	2.4 oe final answer		1	·
5(b)	32		1	
5(c)	16 nfww		3	M2 for $\frac{1}{2} \times (44+20) \times 10$ oe = 20 <i>k</i> oe or M1 for $\frac{1}{2} \times (44+20) \times 10$ oe, or for 20 <i>k</i> oe = <i>their</i> distance travelled from <i>t</i> = 0 to <i>t</i> = 10

6(a)	-1.6 oe			1	
6(b)	Correct smooth curve			3	B2FT for 7 or 8 points correctly plotted or B1FT for 5 or 6 points correctly plotted
6(c)(i)	Tangent drawn at (-2, 0.8)]	B1	
6(c)(ii)	-3.1 to -2.2]	B1	Dependent on tangent drawn at $x = -2$
6(d)	-2.5 to -2.3 1.4 to 1.6 2.7 to 2.9			3	FT reading <i>their</i> graph at $y = 2$ Tolerance ± 1 mm B1 for each one correct After 0 scored, SC1 for $y = 2$ soi
7(a)	ruled line from (0, 0) to (30, 20) and ruled line from (30, 20) to (90, 20) and ruled line from (90, 20) to (110, 0)		2	B	1 for a graph with one error
7(b)	1700 nfww		2	un	 1 for a correct attempt to find a relevant area ader the graph, B1 for two of 300, 1200, 200.

8(a)	-1.6 oe			1	
8(b)	Correct smooth curve			3	B2FT for 7 or 8 points correctly plotted or B1FT for 5 or 6 points correctly plotted
8(c)(i)	Tangent drawn at (-2, 0.8)		B	1	
8(c)(ii)	-3.1 to -2.2		B1		Dependent on tangent drawn at $x = -2$
8(d)	-2.5 to -2.3 1.4 to 1.6 2.7 to 2.9		3		FT reading <i>their</i> graph at $y = 2$ Tolerance ± 1 mm B1 for each one correct After 0 scored, SC1 for $y = 2$ soi
9(a)	BC: constant speed 18 m/s for 50 s CD: deceleration 1.2 m/s ² for 15 s		B or If		1 for BC correct and 2 for CD completely correct r B1 for CD with one error or omission 0 marks scored then SC1 for BC is onstant speed and CD is deceleration
9(b)	1215	0		or	II for ½ x 18 x(50 + 85) oe or ne correct area : 180 or 900 or 135 r SC1 for answer 1080
10(a)	$\frac{u}{10}$		L		
10(b)	$\frac{u}{2}$		L		
10(c)	55и	:			I for attempt to find a relevant area under the ph, soi by $50u$ or $5u$ or $60u$

11(a)	5.5, 5.5 oe	1	Both correct
11(b)	Correct smooth curve	3	B2FT for 8 or 9 points correctly plotted or B1FT for 6 or 7 points correctly plotted
11(c)	tangent drawn at $x = 1.5$	B1	Dependent on a curve drawn between $x = 1$ and $x = 2$
	-1.7 to -1.3	B1	
11(d)	$x \le 0.6$ to 0.9 $x \ge 5.1$ to 5.4	2	B1 for one correct or SC1 for answers reversed
11(e)(i)	Ruled line passing through (0, 3) and (4, 0) crossing curve twice	2	B1 for short or unruled line or for two correct points plotted
11(e)(ii)	<i>A</i> = -9, <i>B</i> = -4	2	or M1 for $\left(\frac{x^2}{2} - 3x + 2\right) = \frac{12 - 3x}{4}$ oe After 0, SC1 for $A = -9.2$ to -8.8 and $B = -4.2$ to -3.8
12(a)	$\frac{v}{10}$ oe	1	3.8
12(b)	20 nfww	3	M1 for $\frac{1}{2} \times (40+80) \times v$ oe or B1 for two of 15v, 40v, 5v. M1 for <i>their</i> 60v = <i>their</i> (1200)
13(a)	21	1	
13(b)	$\frac{18}{20}$ oe	1	
13(c)	420	2	M1 for a correct, complete, method to find the area. e.g. $\frac{1}{2} \times (30 + 12) \times (60 - 40)$; $12 \times (60 - 40) + \frac{1}{2} \times (60 - 40) \times (30 - 12)$; $(60 - 40) \times 30 - \frac{1}{2} \times (60 - 40) \times (30 - 12)$

14(a)(ii)	y = -2x - 1 oe FT <i>their</i> gradient from (a)(i)		2	B1 for answer $y = their (-2)x + k$, where $k \neq their 5$ or M1 for $3 = their (-2) \times -2 + k$ oe
14(b)(i)	3.5		1	
14(b)(ii)	Correct smooth curve through 8 correct points	t	3	B2FT for 7 or 8 points correctly plotted or B1FT for 5 or 6 points correctly plotted
14(b)(iii) Clear correct tangent drawn at (1, 1)]	M1	
	-2.4 to -1.6		A1	
14(b)(iv	0.6 to 0.8 and 4.2 to 4.4		2	FT reading from <i>their</i> graph at $y = 2$ B1 for one correct or for $y = 2$ soi
15(a)(i)	-4.5 -4.5	1	Во	th correct
15(a)(ii)	Correct smooth curve	3FT		
			B2	FT for 8 or 9 points correctly plotted
			Or	BIFT for 6 or 7 points correctly plotted
			Or	B1 for the correct scales drawn
15(a)(iii)	-2.4 to -1.6 dependent on tangent drawn	2	2 Accept a correctly formed $\Delta y \div \Delta x$ isw	
			Bl	for tangent drawn at (3, 1.5)
5(a)(iv)(a)	-2 cao			
15(a)(iv)(b)	-2.4 to -2.3 and 4.3 to 4.4			Freading their graph at $y = their -2$ lerance ± 1 small square
			Bl	FT for one correct
15(b)(i)	4	1		
15(b)(ii)	3	1		
15(b)(iii)	324	1		

16(a)	11	1			
16(b)	30				
16(c)(i)	line joining (1125, 25) to (1155, 0)			1	
17(a)	18	2	M1 fo	$r \frac{v-12}{15}$	or $\frac{12-v}{15}$ oe
17(b)	345	2	300 or	45 or 18 FT for 1	rrect partial area: 120 or 225 or 80 $2 \times 25 + 0.5 \times 15 \times (their 18 -$

	18(a)	17		1	
	18(b)	Smooth curve through 7 correct points		3	Mark the curve first
					B2 for at least 5 ft plots correct B1 for at least 4 ft plots correct
	18(c)	-1.7 to -1.4, -0.5 to -0.2, 1.7 to 2.0		2	FT B1 for 2 correct
	18(d)	3 to 5 with tangent drawn		2	B1 for ruled solid tangent drawn
	18(e)(i)	Correct ruled line drawn		1	
	18(e)(ii)	a = 7, b = 4		2	B1 for one correct or a = 6.8 to 7.2 and $b = 3.8$ to 4.2
	18(e)(iii)	-2.4 to -2.1 or -0.7 to -0.5		1	FT
19	(a)	10.4 or any equivalent	2 *		A1 for $\frac{v-4}{8} = \frac{8}{10}$ oe r B1 for 6.4 oe; or for 1.6 oe; seen
	(b)	80	2 *		C1 for 140 r M1 for 10 × (4 + 12)/2 oe
	(c)	Curve, concave upwards, from (0, 0) to (10, their(b)	1√	iı	ndependent
		Straight line from (10, their(b)) to (15, 60 + their(b))	1√	iı	ndependent

	Compiled by : Mustafa Asif							
20	(a)	(-)0.9 oe		1				
	(b)	420		2*	M1 for $\frac{1}{2} \times 20 \times (12 + 30)$ oe			
	(c)	25		2*	M1 for $(k - 20) \times 12 = 60$ oe or C1 for $k = 5$			
21	(a)		0.2 or 0.21[2]	1				
	(b)		Correct axes	B1				
			Correct shape curve through 9 correct points	B2	B1ft for at least 7 correct points plotted			
	(C)		Clear, correct, tangent drawn	M1				
			2.2 to 2.5	A1				
	(d) (i)		Ruled line from (-0.4, 0) to (2, 3.6)	1				
	(ii)		$y = 1.5x + 0.6$ or $y = \frac{3}{2}x + \frac{3}{5}$	2	B1 for $m = 1.5$ oe or for $c = 0.6$ oe or for correct equation in a different form			
	(iii)		0 and 3.1 to 3.2	1ft	FT intersections of <i>their</i> ruled line with <i>their</i> curve			
	(iv)		A = 2.4 to 2.6	1				
			B = 1	1				

22(a)	3.2 or 3.15 or 3.152 to 3.153 5.2 or 5.19 or 5.20 or 5.196	2	B1 for each
22(b)	Correct graph for $0.5 \le x \le 3.5$	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
22(c)	1.7 to 1.8	1FT	FT their graph if one answer
22(d)(i)	Any integer $k \ge -1$	1	
22(d)(ii)	Any integer $k < -1$	1	
22(e)	Tangent ruled at $x = -3$	B1	
	2.5 to 4	B2	dep on tangent drawn at $x = -3$ or close attempt at tangent at $x = -3$ M1 for rise/run also dep on tangent at $x = -3$ or close attempt at tangent at $x = -3$

						4	
22(f)(i	i)	y = 6 - 1	x ruled accurately	M2		t correct line but freehand or ruled line at -1.1 to -0.9 , or through $(0, 6)$ at $y = 6$	
		2.85 ≤	<i>x</i> ≤ 3	A1			
22(f)(i	22(f)(ii) $[a =] 8$ [b =] -48 [c =] -16			4	B3 for 2 correct or $x^5 + 8x^3 - 48x^2 - 16 = 0$ seen or $-x^5 - 8x^3 + 48x^2 + 16 = 0$ seen or M2 for correct multiplication by $8x^2$ or B1 for answers $\pm 8, \pm 48, \pm 16$ or M1 for $\frac{x^2 \times x^3 - 8 \times 2}{x^2 \times 8} = 6 - x$ or M1 for correct multiplication by 8 or M1 for correct multiplication by 8 or M1 for correct multiplication by x^2		
23 (a)		3.75		1		
(b)			Correct curve ft		2ft	B1 for 4 correct plots ft	
(c)			(0.3 to 0.5) ft		2ft	M1 for a reasonable tangent at $x = 2.5$	
(d)			0 cao (3.05 to 3.25) ft		2ft	B1 for either	
(e)	(e) (i)		y = 4 - x		2	M1 for $x^3 + 10x - 80 = 0 \equiv \frac{x}{20}(x^2 - 10) = ax + b$ oe	
	(ii)		L drawn on the grid ft		1ft	Dependent on at least 1 mark in (e)(i).	
(iii)			(3.55) ft		1ft	Dependent on at least 1 mark in (e)(i).	